
Abstract. A new method is introduced for the optimi-
zation of nonorthogonal virtual orbitals for use in
general multicon®guration spin-coupled wave functions.
The use of a number of highly e�ective approximations
greatly reduces the computational e�ort involved, the
most important being the use of a second-order pertur-
bation expression for the energy and an approximate
expression for the elements of the Hessian. As a result,
the overall scheme scales very favourably with respect to
the numbers of active electrons and of basis functions,
making it suitable for the accurate study of large
systems. Benchmark calculations are presented for
the dissociation of LiH�X1R�� and Li2�X1R�g � using a
highly compact four-con®guration wave function. Stan-
dard spin-coupled valence bond expansions in the same
virtual space are required to be signi®cantly larger before
equivalent results are obtained. The results are shown to
compare very favourably with full valence complete
active space self-consistent ®eld calculations using an
identical basis, and binding energies are within 4% of
the values obtained from full con®guration interaction
calculations in the same basis set.

Key words: Spin-coupled valence bond ± Orbital
optimization ± Multicon®guration ± Virtuals

1 Introduction

The introduction of electron correlation into quantum
chemical calculations frequently takes the form of
con®guration interaction (CI) expansions involving the
replacement of one or more occupied orbitals from a
(set of) reference con®guration(s), with virtual orbitals

chosen from a set that has been generated in some
fashion. The amount of correlation introduced into a CI
wave function, especially for heavily restricted expan-
sions, is to some extent determined by how well the set of
virtual orbitals re¯ects the physical nature of the system.
The virtual orbitals generated from a Hartree-Fock
calculation are eigenfunctions of an e�ective operator
containing an averaged contribution to the potential
from all N electrons. This is clearly not physically correct
for the description of excited states [1], and results in
orbitals which are too di�use. Even though this need
only be a consideration when using truncated expan-
sions, full CI (FCI) calculations are still only feasible for
very small systems using small basis sets, making the
generation of optimal virtual orbitals of great impor-
tance. A good example is the amount of interest shown
over many years in the so-called natural orbitals [2±5].

Considerable advances in the e�cient implementation
of, for example, complete active space self-consistent ®eld
(CASSCF) andmultireference CI (MRCI) methods mean
that there are many molecular orbital (MO) based
methods well short of FCI that are still highly accurate.
Such methods include direct optimization of orbitals
which are unoccupied in the standard single-con®gura-
tion Hartree-Fock description and thus, in the language
of this article, involve optimization of virtual orbitals. The
use of reference con®gurations evaluated at the CASSCF
level in MRCI calculations is particularly successful.
Unfortunately, these methods still scale severely with the
size of the problem, so that the development of alternative
virtual optimization methods, with better scaling prop-
erties, is still of considerable interest. E�cient virtual
optimization allows one to restrict expansion sizes as far
as possible, whilst retaining a high degree of accuracy. In
this way the amount of direct chemical interpretation that
can be extracted from the calculation is maximized. This
has always been an integral part of the philosophy of
modern developments of valence bond (VB) theory, such
as the spin-coupled (SC) method.

In contrast to Hartree-Fock theory, each of the N
occupied orbitals in a SC wave function is an eigen-
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function of a unique e�ective operator which involves
potential energy contributions from only the remaining
(N )1) electrons [6]. Hence the N sets of virtual orbitals
generated from diagonalizing each of these operators
will be more representative of excited states of the
system where one or more occupied orbitals has been
replaced. Experience has indeed shown that the initial
convergence characteristics of a spin-coupled valence
bond (SCVB) nonorthogonal CI expansion is superior to
that of a standard MO±CI treatment, thus allowing the
use of considerably shorter expansion lengths [7±9]. The
SCVB method has been applied to many diverse systems
with great success and has proved especially valuable
with regard to the interpretation of results in terms that
are of use to the general chemical community.

Despite the excellent initial convergence, the SCVB
expansion subsequently becomes much more slowly
convergent, so that reasonably large numbers of struc-
tures still have to be used in many cases to achieve highly
accurate results. Systems with a large enough number of
electrons will no longer be adequately described by
compact SCVB wave functions, and this is the motiva-
tion behind the development of the current method.
Since a large number of single-point calculations need to
be determined to generate a detailed picture of a full
potential surface, any method that allows expansion
sizes of wave functions to be greatly reduced without
compromising accuracy could be of great value.

Thorsteinsson et al. have recently developed the
complete active space valence bond (CASVB) method
which uses CASSCF techniques, with all their inherent
advantages, to perform fully variational optimizations of
general types of modern VB wave functions [10±14].
These may be the single-con®guration spin-coupled
wave function, or multicon®guration (MC) wave func-
tions of the type considered in this paper, depending on
the size and the type of the active space chosen. The
nonorthogonal orbitals and structure coe�cients are
optimized simultaneously without approximation. This
promises to be a very powerful technique of wide
applicability and should serve to improve greatly our
understanding of the connection between MO±CI and
modern VB approaches.

As the number of active electrons in a system in-
creases, however, the CASVB strategy will su�er the
same scaling problems as experienced by CASSCF itself,
meaning that alternative techniques for such systems are
still necessary. The methodology described here, which
utilizes a number of important approximations during
the optimization procedure, has been developed pre-
cisely to address this need.

Raimondi et al. developed a scheme for optimizing
SC virtual orbitals used in the description of intermo-
lecular potentials for van der Waals complexes [15]. This
involved the energy minimization of a SCVB wave
function describing the complete ``super-system'', con-
structed using the N SC-occupied orbitals (®xed) deter-
mined in the usual fashion, and a set of N virtual orbitals
(varied), each directly associated with a particular oc-
cupied orbital. The SCVB expansion included the SC
con®guration and all doubly excited con®gurations
involving a single excitation local to each of the two

molecular fragments. In this way, a description of the
He. . .LiH system was achieved using an expansion
length two orders of magnitude smaller than a standard
SCVB calculation of equivalent accuracy. Whilst this is
perfectly adequate for the study of long-range dispersion
interactions, a generalized scheme for treating correla-
tion in single molecules, as well as reactive collisions
between fragments, requires the inclusion of a wider
range of con®gurations and the use of a more robust
optimization procedure. These generalizations are the
subject of the current article and, since the previous
scheme was presented strictly in the context of two dis-
tinct fragments using separate sets of basis functions (to
avoid BSSE), we shall in the next section redevelop the
basic theory for a single fragment, and then present in
detail the new optimization scheme.

Section 3 provides a brief review of the Pyper±Gerratt
(PG) MCSC wave function, which has many similarities
to the work presented here [16]. However, there are
certain important di�erences between the methods
which are highlighted and discussed in Sect. 3, as are the
recent advances of Penotti [17]. In Sect. 4 we present
results for the LiH and Li2 molecules, which demon-
strate the high accuracy of these new extremely compact
expansions. The results are compared with conventional
SCVB calculations, and show the signi®cant expansion
size reduction possible with this new method. Compar-
ison is also made with the results of Pyper and Gerratt
(PG), with two-electron full valence CASSCF and FCI
calculations, and with MRCI calculations using multi-
con®guration self-consistent ®eld (MCSCF) reference
con®gurations.

2 Theory

The reference con®guration from which we create our
excited con®guration is the SC wave function [6, 9],
which can be written as follows:

W0 �A /0
1/

0
2 . . . /0

N

Xf N
S

k�1
c0SkH

N
SM ;k

0@ 1A ; �1�

in which N is the total number of electrons, HN
SM ;k is

the kth out of a total of f N
S linearly independent spin

eigenfunctions of Ŝ
2

and Ŝz, A is the antisymmetrizing
operator and the 0 superscript denotes an occupied
orbital. As usual, each SC orbital is expanded in a basis
set, in this case of M atomic orbitals fvag

/0
i �

XM
a�1

c0iava : �2�

The SC wave function is freely optimized simulta-
neously with respect both to the orbital coe�cients c0ia
(Eq. 2) and to the spin-coupling coe�cients c0Sk (Eq. 1),
without the imposition of any constraints that would
change the total wave function. The N optimized /0

i
orbitals are nonorthogonal and they are each eigen-
functions of a di�erent e�ective operator, built up from
contributions from the other N)1 electrons:
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F̂
eff

i /0
i � ei/

0
i : �3�

The e�ective operators are of dimension M and so, in
addition to the SC occupied orbital /0

i , diagonalization
of this operator generates a further M )1 virtual orbital
denoted as /j

i , where j signi®es the position in the list. In
this fashion, a ``stack'' of virtual orbitals is obtained for
each electronic coordinate. The orbitals are mutually
orthogonal within a given stack but they are not in
general orthogonal to orbitals in the other stacks.
Excited con®gurations can be constructed by replacing
one or more occupied SC orbitals with a virtual orbital,
frequently taken from the same stack as the occupied
orbital, in which case it is referred to as a ``vertical''
excitation. If the occupied orbital is replaced with a
virtual from a di�erent stack, then this is referred to as a
``cross'' excitation. A linear combination of the reference
SC con®guration and the excited con®gurations de-
scribed above constitutes a so-called SCVB wave func-
tion. Optimizing the expansion coe�cients via resolution
of the corresponding secular problem, which requires the
evaluation of Hamiltonian and overlap matrices between
nonorthogonal VB structures, gives the total energy of
the system. Considering SCVB expansions which contain
all possible double vertical excitations into M virtual
orbitals for an N electron system of total spin S, we ®nd
that the expansion will include 1

2N�N ÿ 1�M2f N
S excited

structures. For a reasonably small system with
N � 6; M � 10 and S � 0, just double excitations result
in 7,500 excited structures. Given that a large number of
virtuals are often required [18] to achieve highly accurate
results, calculations on systems containing a large
number of electrons rapidly become untenable.

To overcome this severe size restriction, it is necessary
to ®nd ways to achieve equivalent, or almost equivalent,
results with much smaller numbers of virtual orbitals.
Considering that the standard SCVB virtuals already
come from diagonalization of a physically reasonable
operator, the next stage in improving virtuals must re-
quire a direct in situ optimization of these orbitals with
respect to the energy of an SCVB wave function. If we
have just one virtual orbital per stack, denoted /�i , our
N -electron all-double-excitation SCVB expansion can be
written:

W � c0W0 �
XN

i�1

XN

j>i

CijWij ; �4�

where

Wij �A /0
1/

0
2 . . . /�i . . . /�j . . . /0

N

Xf N
S

k�1
cij

SkH
N
SM ;k

0@ 1A :

�5�
Our task is to ®nd the set of virtual orbitals f/�i g that

minimizes the energy of the wave function in Eq. (4).
Bearing in mind that our principal aim is to reduce the
e�ort required to calculate each point on a potential
surface, whilst retaining a high level of accuracy, it is
important that we ®nd a way to optimize these virtuals
as economically as possible. To help achieve this we take
advantage of the following approximations:

1. The spin-coupling coe�cients cij
Sk for the excited

con®gurations are ®xed to the values for the SC
reference con®guration c0Sk .

2. The virtual orbitals for the expansion in Eq. (4) are
optimized with respect to the energy of the overall
wave function approximated by means of a pertur-
bation expression up to second order [19, 20].

Once the orbitals are optimized, within these ap-
proximations, they can then be used in a standard
nonorthogonal CI expansion in order to relax the spin-
coupling coe�cients and to ®nd a variationally bound
value for the energy. We shall refer to such an expansion
as a SCVB* wave function. Optimizing the virtuals with
respect to the second-order perturbation approximation
to the energy introduces a major saving in that we need
only to evaluate the diagonal and ®rst-row elements of
the Hamiltonian and overlap matrices. The energy
expression is:

E�2� � H00 �
XN

i�1

XN

j>1

H�0;ij� ÿ H00S�0;ij�
� �2
H00S�ij;ij� ÿ H�ij;ij�

�6�

where H00 � hW0jĤjW0i, H�0;ij� � hW0jĤjWiji, S�0;ij� �
hW0jWiji, and so on.

The Hamiltonian matrix elements written in terms of
density matrices correspond to those for the usual SC
wave function except that now the bra and ket orbitals
will in general be di�erent. This has important conse-
quences for the symmetry properties of the supercofac-
tors [15, 21]. Taking the matrix element H0; ij as a
representative example we have

H�0;ij� �
XN

rs

h/0
r jĥ�1�j/ij

s iD�0;ij��rjs�

� 1

2

XN

rstu

h/0
r /

ij
t k/0

s /
ij
u iD�0;ij��rsjtu� ; �7�

where the integrals in the ®rst and second terms are the
one- and two-electron integrals, respectively (in charge-
cloud notation). The D�0;ij��rjs� and D�0;ij��rsjtu� are the
®rst- and second-order supercofactors in which the bra
orbitals are all SC occupied orbitals, whilst for the ket
orbitals, /0

i and /0
j are replaced by /�i and /�j . To

minimize the energy E�2� with respect to the virtual
orbitals f/�j g we use the stabilized Newton-Raphson
procedure [22], as in some implementations of the SC
method. This requires ®rst and second derivatives of the
energy with respect to an arbitrary virtual orbital, /�j .
The expression for the energy gradient with respect to
/�j is

@E�2�

@/�j
�
XN

i6�j

Aij @H�0;ij�
@/�j

ÿ H00

@S�0;ij�
@/�j

" #(

� 1

4
�Aij�2 @H�ij;ij�

@/�j
ÿ H00

@S�ij;ij�
@/�j

" #) �8�

where

Aij � 2
H�0;ij� ÿ H00S�0;ij�
H00S�ij;ij� ÿ H�ij;ij�

� �
: �9�
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Performing the di�erentiations, having adopted the
by now standard SC technique of applying Laplace's
expansion of the supercofactor elements [21], and then
expanding the ket orbitals in terms of the atomic orbital
basis functions, we arrive at the following expression for
the energy gradient with respect to the ath expansion
coe�cient of virtual orbital j:

@E�2�

@cja
� eja �

XN

i�1
h/�i jĜjijvai ; �10�

in which

eja �
XN

l�1
h/0

l jF̂�0;ij�jl jvai �
XN

i6�j

XN

l 6�ij

h/0
l jF̂�ij;ij�jl jvai �11�

is independent of virtual orbital j, and

Ĝji �
F̂
�ij;ij�
ji if i 6� jPN

r 6�j
F̂
�rj;rj�
jj if i � j .

8><>: �12�

The general expression for the operator F̂ is

F̂
�i0j0;ij�
jl � c�i

0j0;ij�
�
�h�1� ÿ H00�D�i0j0;ij��ljj�:

�
XN

rs

h/i0j0
r jh�1�j/ij

s iD�i
0j0;ij��rljsj�

� 1

2

XN

rstu

h/i0j0
r /ij

t k/i0j0
s /ij

u iD�i
0j0;ij��rsljtuj�

�
XN

rt

S /i0j0
r j/ij

t

� �
D�i

0j0;ij��rljjt�
�
; �13�

where

S�/i0j0
r j/ij

t � �
Z

/i0j0
r �1�

1

r12
j/ij

t �1�ds1

c�i
0j0;ij� � Aij if i0j0 � 0

1
2�Aij�2 if i0j0 � ij .

�
�14�

Starting from Eq. (10), we now consider a general
element of the Hessian, @2E�2�=@cja@clb: The gradient
@E�2�=@cja depends on clb via the bra orbital /�l and via
the various F̂ operators. If we consider only the ®rst of
these dependencies, then it follows directly from Eq. (10)
that we may write:

@2E�2�

@cja@clb
� hvbjĜjljvai : �15�

This approximate form for the Hessian does not require
the computation of any individual terms not already
evaluated for the gradient expression. The only overhead
is the assembly of elements from precalculated quanti-
ties, making this a quick and highly e�cient strategy. We
have found this approximation to work extremely well
for all of the systems studied.

Of course, the Hessian matrix must be Hermitian,
which requires from Eq. (15) that

hvbjĜjljvai � hvajĜljjvbi : �16�
In order to demonstrate that this relationship holds, we

need to show, using Eqs. (12±14), that F̂
�lj;lj�
jl � F̂

�lj;lj�
lj ,

and that this operator is Hermitian. Using Eqs. (13) and

(14) we see immediately that F̂
�lj;lj�
jl is Hermitian, since

for the matrix element hvajF̂�lj;lj�
jl jvbi the bra and ket

orbitals appear only in the terms hvajĥ�1�jvbi; hvajvbi andP
rth/�ij�r /�ij�t kvavbi, all of which are invariant to the

exchange of labels a and b. Finally, to demonstrate that

F̂
�lj;lj�
jl � F̂

�lj;lj�
lj , we note that the orbitals that correspond

to the bra and ket labels in the supercofactors are
identical, and so the general symmetry relation [21]

D�l1; l2; . . . ; lnjm1; m2; . . . ; mn�
� D�m1; m2; . . . ; mnjl1; l2; . . . ; ln� �17�

must apply. From Eqs. (13) and (14) we can see by
inspection that having swapped labels j and l, all other
labels in the integrals and supercofactors correspond to
identical summations over the same orbitals in both the
bra and ket parts and so the equivalence is proven, as is
the Hermitian nature of the approximate Hessian.

The combination of this approximate form for the
Hessian with the use of the second-order perturbation
expression for the energy, results in an overall orbital
optimization strategy that scales extremely favourably
with both the number of ``active'' electrons and the
number of basis functions. Since the evaluation of any
quantity does not require supercofactors beyond third
order, the upper limit to the applicability of the method
is currently ®xed by the determination of the SC occu-
pied orbitals, which require supercofactors up to fourth
order. The number of active electrons that can be treated
is therefore currently about 12±14. Obviously, the use of
an alternative form for the reference con®guration or-
bitals, e.g. GVB-SOPP, could in principle allow for a yet
greater extension of the basic method to even larger
systems. Test calculations on systems with larger num-
bers of electrons than those considered here have con-
®rmed that the optimization procedure is su�ciently
robust to deal with such cases.

We have found that our optimization procedure can
be susceptible to the e�ects of linear dependence when
using large basis sets. A natural and e�ective way to
overcome this problem is to project out each of the N SC
occupied orbitals from the M atomic basis functions and
then Gram-Schmidt orthogonalize [23] the projected
basis to extract M ) N linearly independent functions.
Each of the N virtual orbitals is then expanded in a
combined basis of the SC orbitals and the linearly inde-
pendent projected functions. Problems with linear de-
pendence can then easily be resolved by removing from
each expansion the SC occupied orbital for that stack.

3 The MCSC wave function of Pyper and Gerratt

The present work has much in common with the MCSC
wave function developed by Pyper and Gerratt [16],
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making it a very important reference point for these
calculations. It is therefore worthwhile to review brie¯y
the PG method, highlighting similarities and important
di�erences to the present method. The basic form of the
PG wave function for the LiH�X1R�� ground state is:

WLiH
PG � Crfr1r01r2r02g � Cp

X
a�x;y

fr1r01pap
0
ag : �18�

This is, using the terminology of the present article, a
three-con®guration wave function, in which the lithium
1s1s0 orbitals are constrained to be equivalent for each of
the con®gurations. The two ``valence'' orbitals are
constrained to be of purely r symmetry in the ®rst
con®guration and of one of the two p components in the
other two. For each of the con®gurations, there is a
restriction to just one mode of spin coupling, namely
that in which the r1r01 orbitals and the two valence
orbitals and are singlet coupled. The energy of the wave
function is minimized by optimizing simultaneously all
of the orbitals and the Cr=Cp weighting coe�cients. The
optimization procedure is completely equivalent to that
used for the standard single-con®guration SC wave
function, using the full variational energy expression,
analytic ®rst and second derivatives, and the stabilized
Newton-Raphson procedure. The PG wave function for
Li2�X1R�g � follows the same basic pattern:
WLi2

PG � Crfr1Ar01Ar1Br01Br2Ar2Bg
� Cp

X
a�x;y

fr1Ar01Ar1Br01BpAap
0
Bag �19�

in which the A and B labels refer to each of the lithium
centres.

As described in detail in Sect. 4, virtual orbitals of
di�erent symmetries are optimized in the current method
in a completely independent fashion, using the ®xed SC
occupied orbitals as a reference con®guration. In this
way, for example, the p symmetry virtuals that introduce
angular correlation are optimized without experiencing
the in¯uence of the r symmetry virtuals, which in turn
add signi®cant additional radial correlation. On the
other hand, the SC reference orbitals are not relaxed in
any way to re¯ect the in¯uence of the additional con-
®gurations, whereas in the PG method all of the valence
orbitals are optimized in the presence of one another and
of an optimizable 1s1s¢ ``core''. These di�erences are
likely to have a noticeable e�ect on the ®nal wave
function and in particular on the nature of the individual
optimized virtuals. The ®nal signi®cant di�erence be-
tween the two methods is in the treatment of the spin
coupling. If the perfect-pairing spin function remains the
overwhelmingly dominant mode of spin coupling, as is
the case over all internuclear distances in both LiH and
Li2, then there is very little di�erence between the two
methods. However, for systems containing more than
two valence electrons, the description of the spin
coupling can become much more complicated and the
restriction of the PG method to the use of just the per-
fect-pairing spin function becomes much more severe,
especially when following bond breaking and formation.
Penotti [17] has recently developed a full generalization
of the PG method in which the orbitals, all spin-coupling

coe�cients and basis function orbital exponents are
freely optimized simultaneously. The computational
demands of this method are very heavy and had previ-
ously limited applications to atomic states of He, B and
B). However, an extension to diatomic systems has been
implemented and calculations are currently in progress;
these will provide a very interesting comparison with the
work presented here [24]. An attractive alternative
strategy for calculating general types of multicon®gura-
tion modern VB wave function is the CASVB approach
[10±14].

4 Results and discussion

4.1 LiH

A basis set consisting of (11s8p6d2f =9s7p5d) Cartesian
GTOs contracted to [6s5p3d1f =5s5p3d] was used for Li/
H, and it is reported in Table 1 as a composite list of the
basis functions used for LiH and Li2. The LiH basis set
constitutes a subset of the functions optimized by Roos
and Sadlej for LiH [25]. In both the LiH and Li2
calculations, the lithium 1s1s0 electrons were considered
to have very little e�ect on bond formation (see Refs.
[16, 26]), so the only con®gurations that were included
are those that correlate the nominally Li(2s) and H(1s)
electrons, reducing the number of virtual orbitals to be
determined to just two at each stage. Indeed, our own
calculations treating Li2 as a six-electron system have
shown that correlating also the 1s1s0 electrons results in
a signi®cant but uniform lowering of the energy over the
whole potential curve, thus not a�ecting signi®cantly the
description of molecule formation. Since our main
interest is to describe this process accurately using as
few con®gurations as possible, we have concentrated on
descriptions based on just two active electrons. Never-
theless, the six-electron calculations have provided,
along with other tests, con®rmation that our method is
equally viable for a somewhat larger number of active
electrons.

Because the electronic ground state of LiH is of 1R�
symmetry, con®gurations containing both r2 and p2

double excitations make a contribution, the ®rst pro-
viding radial correlation and the second angular.
Therefore two sets of virtual orbitals were optimized, the
®rst being of pure r symmetry whilst the second is ex-
panded in basis functions of just a single p component.
The virtuals representing the second p component were
obtained via a rotation of the optimized p orbitals by an
angle of p=2 about the internuclear axis. The ®nal SCVB
wave function (hereafter denoted SCVB*-4) constructed
using these virtuals contained therefore just four con-
®gurations, namely the SC con®guration, one double
excitation into r symmetry virtuals and two double
excitations into p symmetry virtuals. Since f 4

0 � 2, the
SCVB*-4 wave function contains eight valence bond
structures. Further electron correlation could be intro-
duced by optimizing virtuals of yet higher angular
momentum (e.g. d), but only at the expense of increasing
the ®nal expansion length.
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The LiH�X1R�� dissociation energy curves for the
SC wave function, a two-con®guration wave function
containing the SC and r2 con®gurations [SCVB*-2]
(perturbation energy) and the SCVB*-4 wave function
are presented in Fig. 1. Adding just the r2 con®guration
to the SC wave function makes a considerable di�erence
to the potential energy curve (long dashed curve in
Fig. 1). It is important to note that this curve is of the
nonvariational second-order perturbation energy. It is
perfectly smooth and continuous at each point, dem-
onstrating that the virtual orbitals have been optimized
in a consistent fashion and that the projection method
used to overcome problems with linear dependence does
not favour one region of the potential over another.
Using these two con®gurations in a standard SCVB
expansion to relax the spin-coupling coe�cients and to
obtain a variational result makes a minimal di�erence to
the energy, typically less than 5� 10ÿ4 eV: This extra r2

con®guration has so far increased only the amount of
radial correlation in the wave function. The two p2

con®gurations, which complete our wave function, in-
troduce for the ®rst time angular correlation, and the
signi®cant drop in energy between the two- and four-
con®guration wave functions demonstrate the relative
importance of angular correlation in this system.

The fourth curve in Fig. 1 corresponds to full valence
CASSCF (FVCAS) calculation using an identical basis.
For LiH this involves distributing the two valence elec-
trons in all symmetry allowed ways amongst the ®ve
valence orbitals, resulting in eight con®guration state
functions (CSFs). The lithium ls2 core was relaxed dur-

ing these calculations but it was not directly correlated.
Since the SC calculation includes radial correlation for
the Li core, the absolute FVCAS energies will be higher
than those of the SC-based wave functions. However,
the arguments given at the start of this section suggest
that the two dissociation energies should be directly
comparable. The FVCAS is a more realistic comparison
to the current work than the MCSCF-4 results described
below, the latter being included to highlight the advan-

Table 1. Exponents ai and
contraction coe�cients ki for
the GTO basis set

a Basis function used only in Li2
calculation
bBasis function used only in
LiH calculation

Type Lithium Type Hydrogen

ki ai ki ai

s 0.000075 9497.9344 s 0.000044 1776.7756
0.000584 1416.8112 0.000372 254.01771
0.003062 321.45994 0.002094 54.698039
0.012605 91.124163 0.008863 15.018344
0.042356 29.999891 s 0.03054 4.915078

s 0.11478 11.017631 0.090342 1.794924
0.239381 4.372801 s 1.0 0.710716

s 1.0 1.831256 s 1.0 0.304802
s 1.0 0.802261 s 1.0 0.138046
s 1.0 0.362648 p 0.0138 4.915078
s 1.0 0.113995 0.0684 1.794924
sa 1.0 0.051237 0.2529 0.710716
sa 1.0 0.022468 p 1.0 0.304802
p 0.034600 11.017631 p 1.0 0.138046

0.114800 4.372801 p 1.0 0.062157
0.264400 1.831256 p 1.0 0.027967

p 0.111700 0.802261 d 0.0503 1.794924
0.147000 0.362648 0.3 0.710716

p 1.0 0.113995 d 0.1156 0.304802
p 1.0 0.051237 0.246 0.138046
p 1.0 0.022468 d 1.0 0.062157
d 0.0547 4.372801

0.1954 1.831256
0.3783 0.802261

d 0.1816 0.113995
1.1978 0.051237

db 1.0 0.022468
f b 0.5292 0.051237

0.8751 0.022468

Fig. 1. Dissociation energy curves for the X1R� state of LiH for
the spin-coupled (SC), SCVB*-2, SCVB*-4 and full-valence
complete active space self-consistent ®eld (FVCAS) wave functions
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tages of working with nonorthogonal orbials when
including a very restricted con®guration list. Since we
are dealing with e�ectively a two-electron system, the
FVCAS results can be expected to be very similar to the
two-electron full CI (see Table 2 and later in this sec-
tion). From Fig. 1 we can see that the SCVB*-4 and
FVCAS curves are almost identical, with the FVCAS
giving a marginally lower dissociation energy, suggesting
that the SCVB*-4 wave function recovers a large amount
of the correlation energy available with this basis set.

Table 2 presents a quantitative comparison between
molecular properties calculated using the SVCB*-4 wave
function of the current work and a range of other wave
functions, along with experimental values [27±29]. We
have considered the SC, PG (using a high quality STO
basis set), the two-electron FVCAS and FCI wave
functions, a four-con®guration MCSCF [30], and ®nally
two singles and doubles CI wave functions [30], using
two and four reference con®gurations, respectively. (The
PG is a SCVB*-3 type wave function using just the
perfect-pairing spin function but with all orbitals
simultaneously optimized). All values given refer to the
equilibrium distance relevant for that wave function. We
can see that the SC wave function overestimates the
position of the minimum, Re, by 2.4%, whilst the PG
and SCVB*-4 wave functions overestimate it by 1.1%
and 0.95%, respectively, a noticeable improvement in
both cases. A much greater di�erence is seen, however,
in the values of the dissociation energy, De. The SC wave
function recovers 77% of the experimental value, whilst
adding the two extra p2 con®gurations in the PG wave
function increases this to 89.5% . The four-con®guration
SCVB*-4 wave function represents a further signi®cant
improvement, raising this to 95% . It is clear that having
the extra r2 con®guration to augment the radial corre-
lation is of considerable importance. The SCVB*-4 re-
sult is very satisfying indeed, considering the extremely
small number of con®gurations used. The fact that we
have improved so much on the already accurate PG
wave function, for which orbitals were rigorously and
simultaneously optimized, by the inclusion of just two
extra r virtuals, demonstrates that the use of the second-
order perturbation energy during the optimization of the
SCVB*-4 virtual orbitals is a viable strategy.

The FVCAS results, using an identical basis, are very
similar to SCVB*-4 whilst the1269-CSF FCI has only a
very slight improvement in Re and recovers 98.7% of De;
i.e. SCVB*-4 is less than 4% (0.1 eV) short of the best
possible valence-only result for this basis. It is instructive
to contrast the relative sizes of the SCVB*-4 and
FVCAS wave functions. In the former, we have just four
con®gurations involving 2� r, 2� px and 2� py virtu-
als which, other than by symmetry, are mutually non-
orthogonal. The 2� r SC ``occupied'' orbitals are not
optimized along with the virtuals and the r and p sym-
metry orbitals are optimized separately. In the latter we
have eight CSFs involving 3� r, 1� px and 1� py
mutually orthogonal orbitals which are all fully opti-
mized simultaneously in a strictly variational fashion.
The FVCAS calculation has computational advantages
linked to the many simpli®cations that arise from the use
of orthogonal orbitals, but SCVB*-4 achieves practically
equivalent result using just half the number of con®gu-
rations. Clearly, each method has its attractions and it is
not the purpose of the current article to detract from the
enormous achievements of modern MO theory. The
most attractive aspects of the SCVB* method, not fully
brought out by these initial benchmark calculations, are
the scaling properties which, due to the very compact
nature of wave functions constructed from nonorthog-
onal orbitals, could make it very competitive with
respect to standard FVCAS calculations.

The advantages of using nonorthogonal orbitals to
maximize the accuracy of short expansions is admirably
demonstrated by comparison with the MCSCF-4 wave
function in Table 2. This also includes just four con®g-
urations involving r, px, and py virtuals and uses
a comparable �7s5p3d=6s3p� GTO basis. MCSCF-4
recovers only 91% of De, and including all singles and
doubles from both the �1r�2�2r�2 and �1r�2�3r�2 con-
®gurations (3728 CSF MCCI-2), or from all four refer-
ence con®gurations (6105 CSF MCCI-4), recovers only
98% and 98.5% of De, respectively, just a 0.09 eV
improvement on SCVB*-4 for a 500-fold increase in the
number of con®gurations.

One notable aspect of the LiH system is the behav-
iour of its dipole moment during dissociation. As the
LiAH bond length R increases from its equilibrium
value, the molecule initially tends to the form Li� �Hÿ,
followed by a fairly abrupt change to covalent character
in the region from ca. 5 to 7 a.u. This is re¯ected in the
dipole moment, which extensive calculations have
shown goes through a maximum at R � 5 a.u. [31, 32].
Reproducing the R-dependence of this dipole moment
function is a severe test of the quality of a wave function,
as it re¯ects directly the charge separation between the
two centres. The single con®guration SC wave function
reproduces well the radial behaviour of the dipole, but it
both underestimates and displaces the maximum to too
short a distance [32]. We have found that SCVB*-4,
despite the improvement in the energy, makes very little
improvement to the dipole moment function (just 0.34%
and 0.43% at Re and at R�maxl� for the SC wave function,
respectively). This appears to re¯ect the well-known fact
that the perturbation energy will be accurate to order
�2k � 1� for a wave function accurate to order k [33]. By

Table 2. Calculated and experimental molecular properties for the
X1R� state of LiH

Re/AÊ De/eV le/D

SC 1.633 1.94 5.749
PG 1.612 2.26 5.762
SCVB*-4 1.610 2.39 5.736a

FVCAS 1.609 2.42 5.889
FCI 1.607 2.49 ±
MCSCF-4 1.611 2.29 5.764
MCCI-2 1.602 2.47 5.775
MCCI-4 1.601 2.48 5.775
Experiment 1.595b 2.52c 5.882d

a Twelve con®gurations ± see discussion
bRef. [27]
c Ref. [28]
dRef. [29]
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comparison, the dipole moment from the PG wave
function represents a considerable improvement over
that of the SC. The di�erence in the behaviour of the
dipole moment functions for the PG and SCVB*-4 wave
functions is due, at least in part, to the fact that in the
former, all of the r and p symmetry orbitals are opti-
mized simultaneously, and that di�erent basis sets were
used to describe the r and p con®gurations.

Since it is clear that the SCVB*-4 wave function un-
derestimates the degree of change separation in LiH, a
simple way of improving the situation is to add at the
®nal SCVB stage the eight ionic con®gurations in which
one of the two valence and six virtual orbitals is doubly
occupied. The additional cost is negligible since no more
orbital optimization is required and, because the SCVB
stage is fully variational, as much or as little ionic
character may be naturally introduced as is necessary.
The ®nal wave function now has 12 con®gurations
(SCVB*-12) and we ®nd that adding the ionic con®gu-
rations has a minimal e�ect on the energy (�5� 10ÿ5
hartree at Re) but a signi®cant e�ect on the dipole mo-
ment, as expected. The SCVB*-12 dipole moment is still
little changed from that for the SC wave function at its
Re (�0:38%) but the di�erence as R increases is marked.
At R�maxl� for the SC wave function, the SCVB*-12
dipole moment is now 2.2% greater and the absolute
maximum for the SCVB*-12 wave function is 6.927 D at
4.83 a.u., to be compared with 6.769 D at 4.72 a.u. for
SC. Both the magnitude and the position of the maxi-
mum have been noticeably improved, although these
remain inferior to those obtained from the PG wave
function, for which STO exponents were reoptimized in
this region of the potential curve. The accurate SCVB
calculation of Cooper et al. [32], found a value of 7.63 D
at 5 a.u., using a universal even-tempered STO basis
set, whilst the CI calculation of Partridge et al. [31],
employing a 22r, 12p and 7d STO basis, found a value of
7.57 D at the same distance. The SCVB*-12 dipole
moment remains �9% lower than these values whilst the
FVCAS calculations return a much better 7.60 D, con-
®rming the adequacy of the GTO basis and reinforcing
our suspicions that the absence of simultaneous r and p
virtual optimization causes SCVB* to underestimate the
dipole. The dipole moment functions for the SC,
SCVB*-4, SCVB*-12 and FVCAS wave functions are
presented in Fig. 2. Note that the apparent superiority in
the value of the dipole moment for the SC wave function
over that of SCVB*-12 (see Table 2) occurs only because
the former signi®cantly overestimates Re.

Finally, it is extremely instructive to compare the
results of more conventional SCVB calculations using
exactly the same basis set but now using the ``standard''
virtual orbitals obtained by diagonalizing the e�ective
operators of the converged SC wave function. Two
separate calculations were performed, one including all
single and double replacements of the two valence SC
orbitals (SCVB-SD) and the other including in addition
all ionic con®gurations, in which the virtual orbitals are
doubly occupied (SCVB-SDI). All con®gurations not of
overall 1R� symmetry were discarded. The calculations
were performed at Re for the SCVB*-4 wave function
and all the virtual orbitals were taken from a single

stack. This is not exactly the standard SCVB technique,
in which virtuals from each of the stack are used, and so
the expansion will converge somewhat more slowly,
possibly considerably so. We deviated from the standard
approach speci®cally so as to allow us to go high up the
chosen single stack and thus investigate more fully the
virtual space, without the danger of introducing linear
dependence which might otherwise occur when using a
potentially overcomplete set of virtuals. It is important to
bear in mind that the comparisons presented here are
intended merely to demonstrate how the SCVB*-4 wave
function spans the available virtual space and not to
act as a direct comparison of the SCVB and SCVB*
methods.

The dissociation energies of the wave functions are
presented in Table 3 for di�erent numbers of r and p
symmetry virtuals from a single stack ± d symmetry
virtuals were not included, so as to keep the comparison
consistent. The value in parenthesis after the energy is
the number of structures in the SCVB expansion. A total
of 18 r and p virtual orbitals and 1046 VB structures,
including an additional class of ionic structures, was
required before this type of SCVB expansion matches

Fig. 2. Dipole moment functions for the X1R� state of LiH for the
SC, SCVB*-4, SCVB*-12 and FVCAS wave functions

Table 3. Calculated LiH�X1R�� dissociation energies (eV) for spin-
coupled valence bond (SCVB) wave functions using di�erent
numbers of r and p symmetry virtual orbitals

nr=np De(SCVB-SD) �nstruct� De(SCVB-SDI) �nstruct�
2/2 )1.937 (16) )1.951 (22)
4/4 )1.943 (54) )1.958 (66)
6/6 )1.960 (116) )2.001 (134)
8/8 )1.994 (202) )2.020 (226)
10/10 )2.004 (312) )2.033 (342)
12/12 )2.098 (446) )2.164 (482)
14/14 )2.206 (604) )2.302 (646)
16/16 )2.259 (786) )2.372 (834)
18/18 )2.306 (992) )2.423 (1046)
20/18 )2.314 (1074) )2.432 (1130)
22/18 )2.323 (1164) )2.443 (1222)
24/18 )2.334 (1262) )2.458 (1322)
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the accuracy of SCVB*-4. These 18 virtuals constitute a
signi®cant proportion of the virtual orbitals available,
demonstrating that the SCVB*-4 optimized virtuals span
a large proportion of the energetically useful available
space. When 24 r and 18 p virtuals are included in the
wave function, generating 1322 structures (which is 165
times more than SCVB*-4), we obtain a value of 2.46 eV
for De, marginally smaller than the values for the larger
MCCI-2 and MCCI-4 wave functions.

The conventional SCVB calculations of Cooper et al.
[32] show the dramatic improvement in convergence that
is achieved when orbitals from each of the stacks of
virtuals are included in the SCVB expansion. Using a
universal even-tempered STO basis, a range of SCVB
wave functions consisting of 78, 127, and 188 spatial
con®gurations were investigated. These yielded De
values of 2.35, 2.41, and 2.44 eV, respectively, clearly
superior to the ``single stack'' SCVB results reported
above. Nevertheless, the SCVB*-4 result still compares
extremely favourably to these results.

4.2 Li2

For Li2 a basis set of �13s8p5d� Cartesian GTOs
contracted to �8s5p2d� was used (see Table 1). The
calculations were performed in a fashion entirely
analogous to that described for LiH. Because f 6

0 � 5,
the SCVB*-4 wave function now contains 20 VB
structures. The Li2�X1R�g � dissociation energies for the
SC, SCVB*-2 (perturbation energy), SCVB*-4 and
FVCAS wave functions are presented in Fig. 3. For
Li2, the 10-CSF FVCAS expansion distributes the two
valence electrons amongst eight valence orbitals. It is
immediately obvious when comparing Figs. 1 and 3 that
the e�ect of introducing the extra con®gurations to the
SC wave function has a markedly greater e�ect for Li2
than for LiH. This re¯ects the fact that the single-
con®guration SC wave function provides a much poorer
reference for Li2. The SCVB*-4 and FVCAS curves are
again very similar, although there is a marginally greater
di�erence than for LiH, because the fully ¯exible

CASSCF wave function is not hampered by a poor
reference function. Table 4 puts all of this on a
quantitative footing by comparing molecular properties
calculated using the SC, PG, SCVB*-4, FVCAS, FCI,
MCSCF-4, MCCI-2 and MCCI-4 [30] wave functions,
and experimental values [27, 28].

The SC wave function overestimates the value of Re
by 9.8% and it only recovers 42% of the experimental
value of De. The PG wave function (a SCVB*-3 type
function as for LiH) represents a considerable im-
provement on this, overestimating Re by only 2% and
recovering a highly creditable 79% of De, once again
demonstrating the importance of including angular
correlation. The SCVB*-4 wave function, however,
represents a signi®cant further leap in accuracy, over-
estimating Re by only 0.7% and recovering 91.5% of De.
When we take into consideration that the SC wave
function is not an especially good zeroth-order wave
function and that our method has no way of reopti-
mizing the SC orbitals, this is an excellent result. The
FVCAS again marginally improves on SCVB*-4, whilst
the two-electron FCI calculations produce a further
energy lowering of less than 0.004 eV. The SCVB*-4
result is therefore an impressive 97% of the FCI value.
MCSCF-4 recovers a relatively meagre 84% of De, 7.5%
less than SCVB*-4. The 5480-CSF MCCI-2 recovers
only 87.5% of De, whilst the 9640-CSF MCCI-4 is
a considerable improvement, recovering 95% . However,
this is still only a 0.04 eV improvement on SCVB*-4,
despite the enormous di�erences in the size of these
various calculations. Based on these benchmarks, the
quality of the SCVB* wave functions, relative to FVCAS
and FCI, is both extremely high and, just as importantly,
extremely consistent. It seems that the performance of
the ®nal SCVB*-4 wave function is essentially una�ected
by whether or not the SC wave function constitutes
a good reference function.

The results of ``single stack'' SCVB calculations per-
formed in exactly the same fashion as for LiH are pre-
sented in Table 5. This SCVB expansion is more rapidly
convergent, compared to SCVB*-4, than was the case
for LiH. A total of 8 r and p virtuals, giving 553 VB
structures (again included an additional class of ionic
structures), were required to match the accuracy of
SCVB*-4. By the time that 12 r and p virtuals are in-
cluded, the 1187-structure wave function has a value of
0.98 eV for De which, in spite of now being based on 60

Fig. 3. Dissociation energy curves for the X1R�g state of Li2 for the
SC, SCVB*-2, SCVB*-4 and FVCAS wave functions

Table 4. Calculated and experimental molecular properties for the
X1R�g state of Li2

Re/AÊ De/eV

SC 2.935 0.44
PG 2.728 0.83
SCVB*-4 2.693 0.96
FVCAS 2.714 0.99
FCI 2.714 0.99
MCSCF-4 2.695 0.88
MCCI-2 2.707 0.92
MCCI-4 2.676 1.00
Experiment 2.673a 1.05b

aRef. [27]
bRef. [28]
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times more structures than SCVB*-4, represents an
improvement of only 0.02 eV. As was also seen for LiH,
the SCVB*-4 optimized virtuals again span a signi®cant
proportion of the energetically useful virtual space.

5 Conclusions

We have introduced a new method for optimizing virtual
orbitals for use in highly compact MCSC wave func-
tions. Some approximations have been utilized in order
to simplify the optimization process, which uses the
stabilized Newton-Raphson procedure. This has resulted
in a very cost-e�ective procedure which is capable of
calculating rapidly a dense grid of points over a full
potential surface.

Benchmark calculations for LiH and Li2 show that a
four-con®guration SC wave function is a signi®cant im-
provement over the standard single-con®guration SC
wave function. The di�erence is particularly dramatic for
Li2, where the quality of the ®nal SCVB* wave function
is not restricted by the relatively poor SC reference
function. The accuracy has been shown to be comparable
to that from standard SCVB procedures based on much
greater numbers of structures. For both systems, the new
method proved to be superior to the MCSC method of
Pyper and Gerratt, in which all orbitals were fully opti-
mized without approximation but with one less con®g-
uration, and to be comparable to a full valence CASSCF
(an orthogonal orbital equivalent) using an identical
basis. MCSCF calculations using the same number of
con®gurations as the SCVB* method were, as expected,
noticeably less successful. Large-scale CI expansions,
using these MCSCF con®gurations as reference, lead to
only very modest improvements to the results obtained
by the four-con®guration SCVB* wave function.

The various approximations implicit in our approach
make the scaling of e�ort with numbers of electrons and
of basis functions somewhat less severe than is the case
for other MCSC methods, such as CASVB and that of
Penotti, making possible calculations on larger systems.
This scaling is noticeably better than that experienced
with standard CASSCF methods. The results presented
in this article demonstrate clearly that the various ap-
proximations made to improve computational e�ciency
do not prevent the method from obtaining highly accu-

rate results. Indeed, the benchmarks show that the
SCVB* method is capable of producing results of at least
comparable accuracy to more traditional approaches.
Calculations on Li2 as a six-electron system, along with
other larger test calculations, have con®rmed that the
method can treat such systems equally well as the smaller
ones considered here. Developments in the technology
used to determine the SC wave function will clearly
increase further the potential of the SCVB* method. The
calculation of the full reactive potential surface for
H. . .Li. . .H has been recently completed and work on
considerably larger systems is now in progress.
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